Stoddart Mechanostereochemistry Group

 

Home

Contacts

Intranet

Stoddart Mechanostereochemistry Group
 

template-directed synthesis

 

Mechanically interlocked molecular compounds can be synthesized in high yields by using template-directed assistance to covalent synthesis. Catenanes and rotaxanes are two classes of mechanically interlocked molecules that have been prepared using a variety of methods such as "clipping" "slipping" and "theading-followed-by-stoppering" under both kinetic and thermodynamic regimes. These different methods have utilized a range of templates such as transition metals, π-donor / π-acceptors, and hydrogen-bonding motifs. Multivalency has emerged as another tool to aid and abet the supramolecularly assisted synthesis of mechanically interlocked molecules.
Recent advances in our understanding of the nature of the mechanical bond have led to the construction of molecular machines with controllable motions that have, in one instance, been introduced into molecular electronic devices.



Interlocked molecules1-2 consist of two or more components that are held together as a consequence of mechanical linking rather than by covalent bonds. The interest of the scientific community was initially piqued by the challenges inherent in their efficient syntheses, as well as by their relatively unconventional architectures- a fascinating aspect of their structure that marries topology with chemistry. Catenanes and rotaxanes3-7 are the archetypal examples of such mechanically interlocked compounds. They merely represent the forerunners, however, of an ever-expanding family of more intricate assemblies, including trefoil knots,8 suitanes,9-10 Borromean rings,11-16 and King Solomon's knot.17


References:


  1. Amabilino, D. B.; Stoddart, J. F.; Chem. Rev. 1995, 95, 2725-2828.

  2. Arico, F.; Badjic, J. D.; Cantrill, S. J.; Flood, A. H.; Leung, K. C. F.; Liu, Y.; Stoddart, J. F.; Top. Curr. Chem. 2005, 249, 203-259.

  3. Ashton, P. R.; Goodnow, T. T.; Kaifer, A. E.; Reddington, M. V.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Vicent, C.; Williams, D. J.; Angew. Chem. Int. Ed. Engl. 1989, 28, 1396-1399.

  4. Ashton, P. R.; Glink, P. T.; Stoddart, J. F.; Tasker, P. A. White, A. J. P.; Williams, D. J.; Chem. Eur. J. 1996, 2, 729-736.

  5. Jeppesen, J. O.; Perkins, J.; Becher, J.; Stoddart, J. F.; Angew. Chem. Int. Ed. 2001, 40, 1216-1221.

  6. Tseng, H.-R.; Vignon, S. A.; Stoddart, J. F.; Angew. Chem. Int. Ed. 2001, 42, 1491-1495.

  7. Dichtel, W. R.; Miljanic, O. S.; Spruell, J. M.; Heath, J. R.; Stoddart, J. F.; J. Am. Chem. Soc. 2006, 128, 10388-10390.

  8. Ashton, P. R.; Matthews, O. A.; Menzer, S.; Raymo, F. M.; Spencer, N.; Stoddart, J. F.; Williams, D. J.; Leibigs Ann./Recueil 1997, 2485-2494.

  9. Williams, A. R.; Northrop, B. H.; Chang, T.; Stoddart, J. F.; White, A. J. P.; Williams, D. J.; Angew. Chem. Int. Ed. 2006; 45, 6665-6669.

  10. Northrop, B. H.; Tangchaivang, N.; Badjic, J. D.; Stoddart, J. F.; Org. Lett. 2006, 8, 3899-3902.

  11. Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F.; Science 2004, 304, 1308-1312.

  12. Cantrill, S. J.; Chichak, K. S.; Peters, A. J.; Stoddart, J. F.; Acc. Chem. Res. 2005, 38, 1-9.

  13. Chichak, K. S.; Cantrill, S. J.; Stoddart, J. F.; Chem. Commun. 2005, 3391-3393.

  14. Peters, A. J.; Chichak, K. S.; Cantrill, S. J.; Stoddart, J. F.; Chem. Commun. 2005, 3394-3396.

  15. Chichak, K. S.; Peters, A. J.; Cantrill, S. J.; Stoddart, J. F.; J. Org. Chem. 2005, 70, 7956-7962.

  16. Pentecost, C. D.; Peters, A. J.; Chichak, K. S.; Cave, G. W. V.; Cantrill, S. J.; Stoddart, J. F.; Angew. Chem. Int. Ed. 2006, 45, 4099-4104.

  17. Pentecost, C. D.; Peters, A. J.; Chichak, K. S.; Cave, G. W. V.; Cantrill. S. J.; Stoddart, J. F.; Angew Chem. Int. Ed. 2007, 46, Issue One.

Copyright 2009 Stoddart Mechanostereochemistry Group. All rights reserved.

Designed by Hussam Khatib

2145 Sheridan Road
Evanston, IL 60208, USA
Phone: +1-847-491-3793
Fax: +1-847-491-1009